1/2

Auszug aus dem Akademiebericht Nr. 434 "Experimentelle Aufgabenstellungen im Chemieunterricht", 2008, Hrsg: Akademie für Lehrerfortbildung und Personalführung, Dillingen a.d. Donau

Gesamter Bericht zu bestellen unter:

Tel.: 09071-53-222 Fax: 09071-53-200

Internet: http://www.alp.dillingen.de/publikationen/pubinfo.html?Nr=434

Aufgabenvariationen zum Thema Lösungswärme

Entwickelt von Wolf Kraus, Christoph-Jacob-Treu Gymnasium Lauf a.d. Pegnitz, Bayern

1.) Anleitung für nacharbeitendes Experimentieren

- 1. Befülle drei Reagenzgläser mit je 5 ml Wasser bekannter Temperatur und löse jeweils eine Spatelspitze Calciumchlorid, Ammoniumnitrat und Natriumchlorid darin. Miss die auftretenden Temperaturänderungen.
- 2. Fertige ein Versuchsprotokoll an und erläutere dein Versuchsergebnis unter Zuhilfenahme entsprechender Fachbegriffe.

2.) Erweiterung der Anleitung um den Kompetenzbereich Kommunikation

1. Wähle aus folgender Tabelle je ein Salz, das in Wasser gelöst, die Lösung möglichst stark erwärmt bzw. abkühlt.

Salz	Lösungsener- gie in kJ/g	Löslichkeit (bei 20°C) in g / 100 g Wasser	
Ammoniumchlorid	+ 0,27	29,90	
Ammoniumnitrat	+ 0,32	118,30	
Calciumcarbonat	- 0,13	0,0015	
Calciumchlorid	- 0,73	58,70	
Calciumsulfat	- 0,13	0,16	
Kaliumnitrat	+ 0,34	13,00	
Natriumchlorid	+ 0,06	35,70	
Silbernitrat	+ 0,13	115,00	

- 2. Überprüfe deine Wahl, indem du jeweils 5 ml einer gesättigten Lösung aller oben genannten Salze mit Wasser bekannter Temperatur herstellst und die auftretende Temperaturänderung misst.
- 3. Fertige ein Versuchsprotokoll an und erläutere dein Versuchsergebnis unter Zuhilfenahme entsprechender Fachbegriffe.

3.) Erweiterung der Anleitung um den Kompetenzbereich **Erkenntnisgewinnung**

1. Wähle aus folgender Tabelle je ein Salz, das in Wasser gelöst, die Lösung möglichst stark erwärmt bzw. abkühlt.

Salz	Lösungsener- gie in kJ/g	Löslichkeit (bei 20°C) in g / 100 g Wasser	
Ammoniumchlorid	+ 0,27	29,90	
Ammoniumnitrat	+ 0,32	118,30	
Calciumcarbonat	- 0,13	0,0015	
Calciumchlorid	- 0,73	58,70	
Calciumsulfat	- 0,13	0,16	
Kaliumnitrat	+ 0,34	13,00	
Natriumchlorid	+ 0,06	35,70	
Silbernitrat	+ 0,13	115,00	

2. Plane und führe je einen Versuch <u>im Reagenzglas</u> mit deinen beiden ausgewählten Salzen durch, um herauszufinden, um wie viel Grad sich 100 ml Wasser auf diese Weise erwärmen bzw. abkühlen lassen!

Fertige ein Versuchsprotokoll an und erläutere dein Versuchsergebnis unter Zuhilfenahme entsprechender Fachbegriffe.

3. Entwickle und zeichne einen Konstruktionsvorschlag für einen selbstheizenden oder selbstkühlenden Trinkbecher und beschreibe das Funktionsprinzip unter Zuhilfenahme von <u>Fachbegriffen!</u>

4.) Erweiterung der Anleitung um den Kompetenzbereich Bewertung

1. Wähle aus folgender Tabelle je ein Salz, das in Wasser gelöst, die Lösung möglichst stark erwärmt bzw. abkühlt.

Salz	Lösungs- energie in kJ/g	Löslichkeit (bei 20°C) in g / 100 g Wasser	Gefah- ren- symbol	Preis in €/ kg	
Ammoniumchlorid	+ 0,27	29,90	Xn	27,25	
Ammoniumnitrat	+ 0,32	118,30	0	23,25	
Calciumcarbonat	- 0,13	0,0015	-	54,00	
Calciumchlorid	- 0,73	58,70	Xi	39,50	
Calciumsulfat	- 0,13	0,16	1	36,25	
Kaliumnitrat	+ 0,34	13,00	0	22,75	
Natriumchlorid	+ 0,06	35,70	-	19,70	
Silbernitrat	+ 0,13	115,00	C, N	1282,00	

- 2. Plane und führe je einen Versuch <u>im Reagenzglas</u> mit deinen beiden ausgewählten Salzen durch, um herauszufinden, um wie viel Grad sich 100 ml Wasser auf diese Weise erwärmen bzw. abkühlen lassen! Fertige ein Versuchsprotokoll an und erläutere dein Versuchsergebnis unter Zuhilfenahme entsprechender Fachbegriffe.
- 3. Entwickle und zeichne einen Konstruktionsvorschlag für einen selbstheizenden oder selbstkühlenden Trinkbecher und beschreibe das Funktionsprinzip unter Zuhilfenahme von <u>Fachbegriffen!</u>
- 4. Für einen ersten Test möchtest du deine Freunde bei einem Picknick mit warmen bzw. gekühlten Getränken "a la Lösungswärme" überraschen.
 - a) Wähle jeweils ein geeignetes Salz für deinen Verwendungszweck aus und begründe deine Wahl nach verschiedenen Kriterien bezüglich ihrer Eignung!
 - b) Nachdem du deinem besten Freund vorab von deiner Idee erzählt hast, meint er nur, es wäre doch besser, eine Kühltasche bzw. eine Thermoskanne mitzubringen. Welche guten Argumente könnte er dafür ins Feld führen?